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This presentation is based on the following:

D. C. Brody, L. P. Hughston & D. M. Meier (2016) Lévy-Vasicek Models and
the Long-Bond Return Process. arXiv:1608.06376
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Pricing kernels

The Vasicek model is of course one of the oldest and most well studied models
in the mathematical finance literature, and one might think that there is very
little that is new that can be said about it.

But it turns out that there are some surprising features of the Vasicek model
relating to the long rate of interest that are very suggestive when it comes to
modelling long term interest rates in general.

In what follows we shall use a pricing kernel method.

This is not the way in which the Vasicek model is usually presented in the
literature.

But we shall see that the pricing kernel formulation is the most effective for our
purposes.

Let us recall first how pricing kernels work in the geometric Brownian motion
(GBM) model for asset prices.
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We fix a Brownian motion {Wt}t≥0 on (Ω,F ,P), and take it to be adapted to a
filtration {Ft}.

P is taken to be the real-world measure.

The GBM model is characterised by the specification of a pricing kernel along
with the price processes of one or more assets.

For the pricing kernel in this model we write

πt = e−rt e−λWt−1
2λ

2t, (1)

where r is the interest rate, and λ > 0 is a risk aversion parameter.

If an asset pays no dividend over some connected interval of time, we require
that the product of the pricing kernel πt and the asset price St should be a
P-martingale over that interval.
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If we take this martingale to be of the form

πtSt = S0 e
βWt−1

2β
2t, (2)

we obtain

St = S0 e
(r+λσ)t eσWt−1

2σ
2t, (3)

where σ = β + λ is the volatility of the asset.

If the asset has a single payoff HT at time T , and derives its value entirely from
that payoff, then the value of the asset at time t < T is given by

Ht =
1

πt
Et[πTHT ]. (4)

In particular, if HT = 1, then we recover the pricing formula for a discount
bond, given by

PtT =
1

πt
Et[πT ]. (5)
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Vasicek pricing kernel

To generalize the GBM model, we shall now make the interest rate stochastic
while keeping the risk aversion level constant.

In other words, we consider a pricing kernel of the form

πt = exp

[
−
∫ t

0

rsds

]
exp

[
−λWt −

1

2
λ2t

]
. (6)

In the Vasicek model, the short rate process {rt}t≥0 is taken to be a
mean-reverting Gaussian process of Ornstein-Uhlenbeck (OU) type, satisfying

drt = k(θ − rt)dt− σdWt. (7)

Here k, θ and σ are respectively the mean reversion rate, the mean reversion
level, and the absolute volatility of the short rate.

The dynamical equation (7) can then be solved to give

rt = θ + (r0 − θ) e−kt − σ

∫ t

0

ek(s−t)dWs. (8)
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To write down the pricing kernel we need the integral of the short rate,

It =

∫ t

0

rsds. (9)

Substitution of (8) into (9) gives

It = θt +
1

k

(
1− e−kt

)
(r0 − θ)− σ

∫ t

s=0

∫ s

u=0

ek(u−s)dWuds. (10)

The double integral can be rearranged and reduced to give

It = θt +
1

k

(
1− e−kt

)
(r0 − θ)− σ

k

∫ t

0

(1− ek(u−t)) dWu. (11)

For some purposes it turns out to be useful to replace the stochastic integral
with an expression involving the short rate to obtain

It = θt +
1

k
(r0 − rt)−

σ

k
Wt . (12)

It follows that the Vasicek pricing kernel can be expressed in the form

πt = exp

[
−
(
θ +

1

2
λ2
)
t +

(σ
k
− λ

)
Wt −

1

k
(r0 − rt)

]
. (13)
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Derivation of the discount bond formula

We proceed to work out the price of a discount bond.

Recall that

PtT =
1

πt
Et[πT ]. (14)

Begin by noting that πT is equal to

exp

[
−
(
θ +

1

2
λ2
)
T − 1

k

(
1− e−kT

)
(r0−θ)+

∫ T

0

(σ
k
− λ− σ

k
ek(u−T )

)
dWu

]
To get an expression for Et[πT ], we need the identity

Et exp
[∫ T

t

(σ
k
− λ− σ

k
ek(u−T )

)
dWu

]
= exp

[
1

2

∫ T

t

(σ
k
− λ− σ

k
ek(u−T )

)2

du

]
.

We then obtain

logPtT = −
(
θ +

1

2
λ2
)
(T − t)− 1

k

(
e−kt − e−kT

)
(r0 − θ)

+
1

2

∫ T

t

(σ
k
− λ− σ

k
ek(u−T )

)2

du +
σ

k

(
1− ek(t−T )

)∫ t

0

ek(u−t) dWu.
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Earlier, we showed that

σ

∫ t

0

ek(u−t) dWu = θ + (r0 − θ)e−kt − rt. (15)

After some further manipulations one obtains the following expression for the
value of a T -maturity discount bond:

PtT = exp

[
−R∞(T − t) +

1

k

(
1− ek(t−T )

)
(R∞ − rt)−

1

4

σ2

k3

(
1− ek(t−T )

)2
]
.

(16)

Here

R∞ = θ +
λσ

k
− 1

2

σ2

k2
(17)

is the asymptotic bond yield, or exponential long rate of interest, defined by

R∞ = − lim
T→∞

1

T − t
logPtT . (18)
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Uniform integrability of the pricing kernel

We remark on the following feature of the Vasicek model, which doesn’t seem to
have been pointed out before.

The Vasicek model has the property that R∞ > 0 if and only if the pricing
kernel is uniformly integrable.

We recall that a collection C of random variables is said to be uniformly
integrable (UI) if

lim
δ→∞

sup
X∈C

E[|X|1{|X| > δ}] = 0. (19)

A random process {Xt}t≥0 is said to be UI if

lim
δ→∞

sup
t
E[|Xt|1{|Xt| > δ}] = 0. (20)

For a pricing kernel we drop the absolute value sign, and the UI condition is

lim
δ→∞

sup
t
E[πt 1{πt > δ}] = 0. (21)

An alternative way of expressing this condition is as follows.
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Let us introduce the natural numeraire process {nt}t≥0 (also known as the
growth optimal portfolio or benchmark portfolio) defined by nt = 1/πt, and set
κ = 1/δ.

Then (21) becomes

lim
κ→0

sup
t
E[πt 1{nt < κ}] = 0. (22)

The expression E[πt 1{nt < κ}] is the price at time 0 of a digital put option on
the natural numeraire with strike κ and maturity t.

Therefore the UI property is a condition on a family of option prices:

Proposition 1. A pricing kernel is uniformly integrable if and only if for any
fixed price level ϵ > 0 there exists a strike κ > 0 such that the value of a digital
put option on the natural numeraire is less than ϵ for all maturities.
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Uniform integrability in the Vasicek model

In the case of the Vasicek model, we have the following results.

Proposition 2. If R∞ > 0 then {πt} is uniformly integrable.

This can be proven by applying the Lp-test for uniform integrability.

The L p-test says that if a collection of random variables is bounded in L p for
some p > 1, then it is UI.

The result follows by verifying that there exists a constant γ > 0 and p > 1 such
that E[πpt ] < γ for all t.

Proposition 3. If R∞ < 0 then {πt} is not uniformly integrable.

To see this, recall that if a collection of random variables is UI then it is
bounded in L 1.

Thus it suffices to show that if R∞ < 0 then {πt} is not bounded in L 1.
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But note that E[πt] = P0t and that

P0t = exp

[
−R∞t +

1

k

(
1− e−kt

)
(R∞ − r0)−

1

4

σ2

k3
(
1− e−kt

)2]
. (23)

We see that if R∞ < 0, this expression grows without bound as t→ ∞.

It remains to check what happens when R∞ = 0.

Proposition 4. If R∞ = 0 then {πt} is not uniformly integrable.

Here, the situation is a little more delicate.

The pricing kernel fails the L p test, so we cannot conclude that it is UI.

But the pricing kernel is bounded in L1, so we cannot conclude that it is not UI.

The conclusion is that we must go to the definition of uniform integrability and
see directly what is going on.
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Recall that uniform integrability is related to the prices of digital puts on the
natural numeraire.

Specifically, we need to investigate limκ→0 suptE[πt 1{nt < κ}].

Following a Black-Scholes type option price calculation, one finds that

E[πt1(nt < κ)] = eAt+
1
2B

2
tN

[
At +

1
2B

2
t + log κ

Bt

]
(24)

where {At} and {Bt} are deterministic functions given by

At = −
(
R∞ +

1

2

(σ
k
− λ

)2

t

)
+

1

k

(
1− e−kt

)
(θ − r0) (25)

and

B2
t =

(σ
k
− λ

)2

t− 2

(
σ2

k3
− λσ

k2

)(
1− e−kt

)
+
1

2

σ2

k3
(
1− e−2kt

)
. (26)

One can show that if R∞ = 0 then

lim
κ→0

sup
t
E[πt 1{nt < κ}] > 0 (27)

and hence the pricing kernel is not UI in this case, as claimed.
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The Lévy–Vasicek pricing kernel

The relation between the uniform integrability of the pricing kernel and the
positivity of the long rate of interest in the Vasicek model leads us to conjecture
that uniform integrability of the pricing kernel may be a condition that we want
to impose on interest rate models in general.

As a step towards understanding what the general situation may be we propose
to investigate a class of Lévy extensions of the Vasicek model.

In particular, building on work by Eberlein & Raible (1999) and Norberg (2004),
and others, we use a Lévy process to drive the SDE for the short rate in the
Vasicek model.

We develop the resulting Lévy–Vasicek models by use of pricing kernel methods.
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We recall that in so-called geometric Lévy models (see, e.g., Brody, Hughston &
Mackie 2012) with a constant value for the short rate r, the pricing kernel takes
the form

πt = e−rt e−λξt−tψ(−λ). (28)

Here, {ξt} is a Lévy process, and λ > 0 is a risk aversion parameter.

We assume that {ξt} admits exponential moments.

In particular, we have
E[eαξt] = eψ(α) t (29)

for α ∈ A for some connected subset A ⊂ R containing the origin, and we
require that −λ ∈ A.

We call ψ(α) the Lévy exponent.
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In the Lévy–Vasicek model, we take the pricing kernel to be of the form

πt = exp

[
−
∫ t

0

rsds− λξt − ψ(−λ)t
]
, (30)

where the short rate is assumed to be a Lévy-OU process satisfying a dynamical
equation of the form

drt = k(θ − rt)dt− σ dξt. (31)

The ensuing calculations follow closely the ones in the classical Vasicek model.

One finds that the pricing kernel in the Lévy-Vasicek model takes the form

πt = exp

[
−
(
θ + ψ(−λ)

)
t +

(σ
k
− λ

)
ξt −

1

k
(r0 − rt)

]
. (32)

The price of a discount bond is given by

PtT = exp

[
− (θ + ψ(−λ)) (T − t) +

∫ T

t

ψ(αuT ) du +
1

k

(
1− ek(t−T )

)
(θ − rt)

]
.

Here we have set

αuT =
σ

k
− λ− σ

k
ek(u−T ). (33)
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A calculation then shows that the long rate of interest in the Lévy-Vasicek
model is given by

R∞ = − lim
T→∞

1

T − t
logPtT = θ + ψ(−λ)− ψ

(σ
k
− λ

)
. (34)

To gain some insight into the significance of this formula, it may be helpful to
re-examine the case when the Lévy process is a Brownian motion.

In that case the Lévy exponent is given by ψ(α) = 1
2α

2.

Thus we have

ψ(−λ)− ψ
(σ
k
− λ

)
=

1

2
λ2 − 1

2

(σ
k
− λ

)2

=
λσ

k
− 1

2

σ2

k2
. (35)

Therefore,

R∞ = θ +
λσ

k
− 1

2

σ2

k2
, (36)

in the Brownian case, as we found earlier.

We see that the two correction terms in the expression for the long rate arise as
the difference of two Lévy exponents.
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Now we can ask whether in Lévy-Vasicek models positivity of the long rate is
associated with uniform integrability of the pricing kernel, as it is in the classical
Vasicek model.

We are able to show the following result:

Proposition 5. The pricing kernel of a Lévy-Vasicek model is UI if and only if
R∞ > 0.

Thus the result we obtain for the Lévy-Vasicek model closely follows that of the
classical Vasicek model.
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